Part of Speech for Latvian

Description

This model annotates the part of speech of tokens in a text. The parts of speech annotated include PRON (pronoun), CCONJ (coordinating conjunction), and 15 others. The part of speech model is useful for extracting the grammatical structure of a piece of text automatically.

Open in Colab Download Copy S3 URI

How to use


pos = PerceptronModel.pretrained("pos_ud_lvtb", "lv") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("pos")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, pos])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
results = light_pipeline.fullAnnotate("Džons Snovs ir ne tikai ziemeļu karalis, bet arī angļu ārsts un anestēzijas un medicīniskās higiēnas attīstības līderis.")

val pos = PerceptronModel.pretrained("pos_ud_lvtb", "lv")
    .setInputCols(Array("document", "token"))
    .setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, pos))
val data = Seq("Džons Snovs ir ne tikai ziemeļu karalis, bet arī angļu ārsts un anestēzijas un medicīniskās higiēnas attīstības līderis.").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu

text = ["""Džons Snovs ir ne tikai ziemeļu karalis, bet arī angļu ārsts un anestēzijas un medicīniskās higiēnas attīstības līderis."""]
pos_df = nlu.load('lv.pos').predict(text, output_level='token')
pos_df

Results

[Row(annotatorType='pos', begin=0, end=4, result='PROPN', metadata={'word': 'Džons'}),
Row(annotatorType='pos', begin=6, end=10, result='PROPN', metadata={'word': 'Snovs'}),
Row(annotatorType='pos', begin=12, end=13, result='AUX', metadata={'word': 'ir'}),
Row(annotatorType='pos', begin=15, end=16, result='CCONJ', metadata={'word': 'ne'}),
Row(annotatorType='pos', begin=18, end=22, result='CCONJ', metadata={'word': 'tikai'}),
...]

Model Information

Model Name: pos_ud_lvtb
Type: pos
Compatibility: Spark NLP 2.5.5+
Edition: Official
Input labels: [token]
Output labels: [pos]
Language: lv
Case sensitive: false
License: Open Source

Data Source

The model is imported from https://universaldependencies.org