Description
This model contains a pre-trained weights of ClinicalBERT for discharge summaries. This domain-specific model has performance improvements on 3/5 clinical NLP tasks andd establishing a new state-of-the-art on the MedNLI dataset. The details are described in the paper “Publicly Available Clinical BERT Embeddings”.
How to use
...
embeddings = BertEmbeddings.pretrained("biobert_discharge_base_cased", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I hate cancer']], ["text"]))
...
val embeddings = BertEmbeddings.pretrained("biobert_discharge_base_cased", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
val data = Seq("I hate cancer").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["I hate cancer"]
embeddings_df = nlu.load('en.embed.biobert.discharge_base_cased').predict(text, output_level='token')
embeddings_df
Results
token	en_embed_biobert_discharge_base_cased_embeddings
	I	[0.0036486536264419556, 0.3796533942222595, -0...
	hate	[0.1914958357810974, 0.6709488034248352, -0.49...
	cancer	[0.04618441313505173, -0.04562612622976303, -0...
Model Information
| Model Name: | biobert_discharge_base_cased | 
| Type: | embeddings | 
| Compatibility: | Spark NLP 2.6.0 | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence, token] | 
| Output Labels: | [word_embeddings] | 
| Language: | [en] | 
| Dimension: | 768 | 
| Case sensitive: | true | 
Data Source
The model is imported from https://github.com/EmilyAlsentzer/clinicalBERT