BERT Sentence Embeddings (Base Uncased)

Description

This model contains a deep bidirectional transformer trained on Wikipedia and the BookCorpus. The details are described in the paper “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”.

Download Copy S3 URI

How to use

...
embeddings = BertSentenceEmbeddings.pretrained("sent_bert_base_uncased", "en") \
.setInputCols("sentence") \
.setOutputCol("sentence_embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I hate cancer', "Antibiotics aren't painkiller"]], ["text"]))
...
val embeddings = BertSentenceEmbeddings.pretrained("sent_bert_base_uncased", "en")
.setInputCols("sentence")
.setOutputCol("sentence_embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, embeddings))
val data = Seq("I hate cancer, "Antibiotics aren't painkiller").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu

text = ["I hate cancer", "Antibiotics aren't painkiller"]
embeddings_df = nlu.load('en.embed_sentence.bert_base_uncased').predict(text, output_level='sentence')
embeddings_df

Results

	en_embed_sentence_bert_base_uncased_embeddings 	      sentence
		
	[0.48797768354415894, 0.250575453042984, -0.24... 	I hate cancer
	[0.06506041437387466, 0.06032593920826912, -0.... 	Antibiotics aren't painkiller

Model Information

Model Name: sent_bert_base_uncased
Type: embeddings
Compatibility: Spark NLP 2.6.0+
License: Open Source
Edition: Official
Input Labels: [sentence]
Output Labels: [sentence_embeddings]
Language: [en]
Dimension: 768
Case sensitive: false

Data Source

The model is imported from https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1