Description
This model contains a deep bidirectional transformer trained on Wikipedia and the BookCorpus. The details are described in the paper “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”.
How to use
...
embeddings = BertSentenceEmbeddings.pretrained("sent_bert_multi_cased", "xx") \
.setInputCols("sentence") \
.setOutputCol("sentence_embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I hate cancer', "Antibiotics aren't painkiller"]], ["text"]))
...
val embeddings = BertSentenceEmbeddings.pretrained("sent_bert_multi_cased", "xx")
.setInputCols("sentence")
.setOutputCol("sentence_embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
val data = Seq("I hate cancer, "Antibiotics aren't painkiller").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["I hate cancer", "Antibiotics aren't painkiller"]
embeddings_df = nlu.load('xx.embed_sentence.bert.cased').predict(text, output_level='sentence')
embeddings_df
Results
xx_embed_sentence_bert_cased_embeddings sentence
[-0.3695415258407593, -0.33228799700737, 0.553... I hate cancer
[-0.2776091396808624, -0.35221806168556213, 0.... Antibiotics aren't painkiller
Model Information
Model Name: | sent_bert_multi_cased |
Type: | embeddings |
Compatibility: | Spark NLP 2.6.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [sentence_embeddings] |
Language: | [xx] |
Dimension: | 768 |
Case sensitive: | true |
Data Source
The model is imported from https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/3