Description
This is one of the smaller BERT models referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher.
How to use
...
embeddings = BertEmbeddings.pretrained("small_bert_L2_128", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I love NLP']], ["text"]))
...
val embeddings = BertEmbeddings.pretrained("small_bert_L2_128", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
val data = Seq("I love NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["I love NLP"]
embeddings_df = nlu.load('en.embed.bert.small_L2_128').predict(text, output_level='token')
embeddings_df
Results
token en_embed_bert_small_L2_128_embeddings
I [-1.2788691520690918, -0.011364400386810303, 0....
love [-1.4087588787078857, -0.348095178604126, -0....
NLP [-1.6277656555175781, -0.28823617100715637, ...
Model Information
Model Name: | small_bert_L2_128 |
Type: | embeddings |
Compatibility: | Spark NLP 2.6.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [word_embeddings] |
Language: | [en] |
Dimension: | 128 |
Case sensitive: | false |
Data Source
The model is imported from https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/1