Description
BERT-large-uncased model, pretrained on a corpus of messages from Twitter about COVID-19.
How to use
...
embeddings = BertSentenceEmbeddings.pretrained("sent_covidbert_large_uncased", "en") \
.setInputCols("sentence") \
.setOutputCol("sentence_embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, embeddings])
pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
result = pipeline_model.transform(spark.createDataFrame([['I hate cancer', "Antibiotics aren't painkiller"]], ["text"]))
...
val embeddings = BertSentenceEmbeddings.pretrained("sent_covidbert_large_uncased", "en")
.setInputCols("sentence")
.setOutputCol("sentence_embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, embeddings))
val data = Seq("I hate cancer, "Antibiotics aren't painkiller").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["I hate cancer", "Antibiotics aren't painkiller"]
embeddings_df = nlu.load('en.embed_sentence.covidbert.large_uncased').predict(text, output_level='sentence')
embeddings_df
Results
en_embed_sentence_covidbert_large_uncased_embeddings sentence
[-1.3138830661773682, 0.592442512512207, -0.21... I hate cancer
[0.08157740533351898, 0.2123042196035385, 0.15... Antibiotics aren't painkiller
Model Information
Model Name: | covidbert_large_uncased |
Type: | embeddings |
Compatibility: | Spark NLP 2.6.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [sentence_embeddings] |
Language: | [en] |
Dimension: | 1024 |
Case sensitive: | false |
Data Source
The model is imported from https://tfhub.dev/digitalepidemiologylab/covid-twitter-bert/2