Description
This model uses context and language knowledge to assign all forms and inflections of a word to a single root. This enables the pipeline to treat the past and present tense of a verb, for example, as the same word instead of two completely different words. The lemmatizer takes into consideration the context surrounding a word to determine which root is correct when the word form alone is ambiguous.
Open in Colab Download Copy S3 URI
How to use
Use as part of a pipeline after tokenisation.
...
lemmatizer = LemmatizerModel.pretrained("lemma", "et") \
.setInputCols(["token"]) \
.setOutputCol("lemma")
nlp_pipeline = Pipeline(stages=[document_assembler, tokenizer, lemmatizer])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
results = light_pipeline.fullAnnotate(['üheksandana üheksas üheksanda Üheksas'])
...
val lemmatizer = LemmatizerModel.pretrained("lemma", "et")
.setInputCols(Array("token"))
.setOutputCol("lemma")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, lemmatizer))
val data = Seq("üheksandana üheksas üheksanda Üheksas").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["üheksandana üheksas üheksanda Üheksas"]
lemma_df = nlu.load('et.lemma').predict(text, output_level='document')
lemma_df.lemma.values[0]
Results
{'lemma': [Annotation(token, 0, 10, üheksas, {'sentence': '0'}),
Annotation(token, 12, 18, üheksas, {'sentence': '0'}),
Annotation(token, 20, 28, üheksas, {'sentence': '0'}),
Annotation(token, 30, 36, üheksas, {'sentence': '0'})]}
Model Information
Model Name: | lemma |
Compatibility: | Spark NLP 2.7.0+ |
Edition: | Official |
Input Labels: | [token] |
Output Labels: | [lemma] |
Language: | et |
Data Source
This model is trained on data obtained from https://universaldependencies.org/
PREVIOUSArabic Lemmatizer