Fast and Accurate Language Identification - 99 Languages (CNN)

Description

Language detection and identification is the task of automatically detecting the language(s) present in a document based on the content of the document. LanguageDetectorDL is an annotator that detects the language of documents or sentences depending on the inputCols. In addition, LanguageDetetorDL can accurately detect language from documents with mixed languages by coalescing sentences and select the best candidate.

We have designed and developed Deep Learning models using CNNs in TensorFlow/Keras. The model is trained on Tatoeba dataset with high accuracy evaluated on the Europarl dataset. The output is a language code in Wiki Code style: https://en.wikipedia.org/wiki/List_of_Wikipedias.

This model can detect the following languages:

Afrikaans, Arabic, Algerian Arabic, Assamese, Kotava, Azerbaijani, Belarusian, Bengali, Berber, Breton, Bulgarian, Catalan, Chavacano, Cebuano, Czech, Chuvash, Mandarin Chinese, Cornish, Danish, German, Central Dusun, Modern Greek (1453-), English, Esperanto, Estonian, Basque, Finnish, French, Guadeloupean Creole French, Irish, Galician, Gronings, Guarani, Hebrew, Hindi, Croatian, Hungarian, Armenian, Ido, Interlingue, Ilocano, Interlingua, Indonesian, Icelandic, Italian, Lojban, Japanese, Kabyle, Georgian, Kazakh, Khasi, Khmer, Korean, Coastal Kadazan, Latin, Lingua Franca Nova, Lithuanian, Latvian, Literary Chinese, Marathi, Meadow Mari, Macedonian, Low German (Low Saxon), Dutch, Norwegian Nynorsk, Norwegian Bokmål, Occitan, Ottoman Turkish, Kapampangan, Picard, Persian, Polish, Portuguese, Romanian, Kirundi, Russian, Slovak, Spanish, Albanian, Serbian, Swedish, Swabian, Tatar, Tagalog, Thai, Klingon, Toki Pona, Turkmen, Turkish, Uyghur, Ukrainian, Urdu, Vietnamese, Volapük, Waray, Shanghainese, Yiddish, Cantonese, Malay.

Predicted Entities

af, ar, arq, as, avk, az, be, bn, ber, br, bg, ca, cbk, ceb, cs, cv, cmn, kw, da, de, dtp, el, en, eo, et, eu, fi, fr, gcf, ga, gl, gos, gn, he, hi, hr, hu, hy, io, ie, ilo, ia, id, is, it, jbo, ja, kab, ka, kk, kha, km, ko, kzj, la, lfn, lt, lvs, lzh, mr, mhr, mk, nds, nl, nn, nb, oc, ota, pam, pcd, pes, pl, pt, ro, rn, ru, sk, es, sq, sr, sv, swg, tt, tl, th, tlh, toki, tk, tr, ug, uk, ur, vi, vo, war, wuu, yi, yue, zsm.

Open in Colab Download Copy S3 URI

How to use

...
language_detector = LanguageDetectorDL.pretrained("ld_tatoeba_cnn_99", "xx")\
.setInputCols(["sentence"])\
.setOutputCol("language")
languagePipeline = Pipeline(stages=[documentAssembler, sentenceDetector, language_detector])
light_pipeline = LightPipeline(languagePipeline.fit(spark.createDataFrame([['']]).toDF("text")))
result = light_pipeline.fullAnnotate("Spark NLP est une bibliothèque de traitement de texte open source pour le traitement avancé du langage naturel pour les langages de programmation Python, Java et Scala.")
...
val languageDetector = LanguageDetectorDL.pretrained("ld_tatoeba_cnn_99", "xx")
.setInputCols("sentence")
.setOutputCol("language")
val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, languageDetector))
val data = Seq("Spark NLP est une bibliothèque de traitement de texte open source pour le traitement avancé du langage naturel pour les langages de programmation Python, Java et Scala.").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu

text = ["Spark NLP est une bibliothèque de traitement de texte open source pour le traitement avancé du langage naturel pour les langages de programmation Python, Java et Scala."]
lang_df = nlu.load('xx.classify.wiki_99').predict(text, output_level='sentence')
lang_df

Results

'fr'

Model Information

Model Name: ld_tatoeba_cnn_99
Compatibility: Spark NLP 2.7.0+
Edition: Official
Input Labels: [sentence]
Output Labels: [language]
Language: xx

Data Source

Tatoeba

Benchmarking

Evaluated on Europarl dataset which the model has never seen:

+--------+-----+-------+------------------+
|src_lang|count|correct|         precision|
+--------+-----+-------+------------------+
|      fi| 1000|   1000|               1.0|
|      pt| 1000|   1000|               1.0|
|      it| 1000|    998|             0.998|
|      es| 1000|    997|             0.997|
|      en| 1000|    995|             0.995|
|      da| 1000|    994|             0.994|
|      sv| 1000|    992|             0.992|
|      pl|  914|    899|0.9835886214442013|
|      hu|  880|    863|0.9806818181818182|
|      lt| 1000|    975|             0.975|
|      bg| 1000|    951|             0.951|
|      et|  928|    783|           0.84375|
+--------+-----+-------+------------------+

+-------+-------------------+
|summary|          precision|
+-------+-------------------+
|  count|                 12|
|   mean| 0.9758350366355016|
| stddev|0.04391442353856736|
|    min|            0.84375|
|    max|                1.0|
+-------+-------------------+