Description
This model annotates named entities in a text, that can be used to find features such as names of people, places, and organizations. The model does not read words directly but instead reads word embeddings, which represent words as points such that more semantically similar words are closer together.
This model uses the pre-trained glove_840B_300
embeddings model from WordEmbeddings
annotator as an input, so be sure to use the same embeddings in the pipeline.
Predicted Entities
DATE
, EVENT
, FAC
, GPE
, LANGUAGE
, LAW
, LOC
, MONEY
, MOVEMENT
, NORP
, ORDINAL
, ORG
, PERCENT
, PERSON
, PRODUCT
, QUANTITY
, TIME
, TITLE_AFFIX
, and WORK_OF_ART
.
Live Demo Open in Colab Download Copy S3 URI
How to use
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
word_segmenter = WordSegmenterModel.pretrained("wordseg_gsd_ud", "ja")\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = WordEmbeddingsModel.pretrained("glove_840B_300", "xx")\
.setInputCols("document", "token") \
.setOutputCol("embeddings")
ner = NerDLModel.pretrained("ner_ud_gsd_glove_840B_300d", "ja") \
.setInputCols(["document", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("entities")
pipeline = Pipeline(stages=[document_assembler, sentence_detector, word_segmenter, embeddings, ner, ner_converter])
example = spark.createDataFrame([['5月13日に放送されるフジテレビ系「僕らの音楽」にて、福原美穂とAIという豪華共演が決定した。']], ["text"])
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val word_segmenter = WordSegmenterModel.pretrained("wordseg_gsd_ud", "ja")
.setInputCols(Array("sentence"))
.setOutputCol("token")
val embeddings = WordEmbeddingsModel.pretrained("glove_840B_300", "xx")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val ner = NerDLModel.pretrained("ner_ud_gsd_glove_840B_300d", "ja")
.setInputCols(Array("document", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols("sentence", "token", "ner")
.setOutputCol("entities")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, word_segmenter, embeddings, ner, ner_converter))
val data = Seq("5月13日に放送されるフジテレビ系「僕らの音楽」にて、福原美穂とAIという豪華共演が決定した。").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("ja.ner").predict("""Put your text here.""")
Results
+----------+------+
|token |ner |
+----------+------+
|5月 |DATE |
|13日 |DATE |
|に |O |
|放送 |O |
|さ |O |
|れる |O |
|フジテレビ|O |
|系 |O |
|「 |O |
|僕らの音楽|O |
|」 |O |
|にて |O |
|、 |O |
|福原美穂 |PERSON|
|と |O |
|AI |O |
|と |O |
|いう |O |
|豪華 |O |
|共演 |O |
|が |O |
|決定 |O |
|し |O |
|た |O |
|。 |O |
+----------+------+
Model Information
Model Name: | ner_ud_gsd_glove_840B_300d |
Type: | ner |
Compatibility: | Spark NLP 2.7.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | ja |
Data Source
The model was trained on the Universal Dependencies, curated by Google.
Reference:
Asahara, M., Kanayama, H., Tanaka, T., Miyao, Y., Uematsu, S., Mori, S., Matsumoto, Y., Omura, M., & Murawaki, Y. (2018). Universal Dependencies Version 2 for Japanese. In LREC-2018.
Benchmarking
| ner_tag | precision | recall | f1-score | support |
|:------------:|:---------:|:------:|:--------:|:-------:|
| DATE | 1.00 | 0.86 | 0.92 | 84 |
| EVENT | 1.00 | 0.14 | 0.25 | 14 |
| FAC | 1.00 | 0.15 | 0.26 | 20 |
| GPE | 1.00 | 0.01 | 0.02 | 82 |
| LANGUAGE | 0.00 | 0.00 | 0.00 | 6 |
| LAW | 0.00 | 0.00 | 0.00 | 3 |
| LOC | 0.00 | 0.00 | 0.00 | 25 |
| MONEY | 0.86 | 0.86 | 0.86 | 7 |
| MOVEMENT | 0.00 | 0.00 | 0.00 | 4 |
| NORP | 1.00 | 0.11 | 0.19 | 28 |
| ORDINAL | 0.92 | 0.85 | 0.88 | 13 |
| ORG | 0.44 | 0.35 | 0.39 | 75 |
| PERCENT | 1.00 | 1.00 | 1.00 | 7 |
| PERSON | 0.71 | 0.06 | 0.10 | 89 |
| PRODUCT | 0.42 | 0.48 | 0.45 | 23 |
| QUANTITY | 0.98 | 0.78 | 0.87 | 78 |
| TIME | 1.00 | 1.00 | 1.00 | 13 |
| TITLE_AFFIX | 0.00 | 0.00 | 0.00 | 20 |
| WORK_OF_ART | 1.00 | 0.22 | 0.36 | 18 |
| accuracy | 0.97 | 12419 | | |
| macro avg | 0.67 | 0.39 | 0.43 | 12419 |
| weighted avg | 0.96 | 0.97 | 0.96 | 12419 |