Description
Natural language generation plays a critical role for Conversational Agents as it has a significant impact on a user’s impression of the system. This shared task focuses on recent end-to-end (E2E), data-driven NLG methods, which jointly learn sentence planning and surface realization from non-aligned data, e.g. (Wen et al., 2015; Mei et al., 2016; Dusek and Jurcicek, 2016; Lampouras and Vlachos, 2016), etc.
So far, E2E NLG approaches were limited to small, de-lexicalized data sets, e.g. BAGEL, SF Hotels/ Restaurants, or RoboCup. In this shared challenge, we will provide a new crowd-sourced data set of 50k instances in the restaurant domain, as described in (Novikova, Lemon, and Rieser, 2016). Each instance consists of a dialogue act-based meaning representation (MR) and up to 5 references in natural language. In contrast to previously used data, our data set includes additional challenges, such as open vocabulary, complex syntactic structures, and diverse discourse phenomena.
Predicted Entities
name[Bibimbap House]
,name[Wildwood]
,name[Clowns]
,name[Cotto]
,near[Burger King]
,name[The Dumpling Tree]
,name[The Vaults]
,name[The Golden Palace]
,near[Crowne Plaza Hotel]
,name[The Rice Boat]
,customer rating[high]
,near[Avalon]
,name[Alimentum]
,near[The Bakers]
,name[The Waterman]
,near[Ranch]
,name[The Olive Grove]
,name[The Wrestlers]
,name[The Eagle]
,eatType[restaurant]
,near[All Bar One]
,customer rating[low]
,near[Café Sicilia]
,near[Yippee Noodle Bar]
,food[Indian]
,eatType[pub]
,name[Green Man]
,name[Strada]
,near[Café Adriatic]
,name[Loch Fyne]
,eatType[coffee shop]
,customer rating[5 out of 5]
,near[Express by Holiday Inn]
,food[French]
,name[The Mill]
,food[Japanese]
,name[Travellers Rest Beefeater]
,name[The Plough]
,name[Cocum]
,near[The Six Bells]
,name[The Phoenix]
,priceRange[cheap]
,name[Midsummer House]
,near[Rainbow Vegetarian Café]
,near[The Rice Boat]
,customer rating[3 out of 5]
,customer rating[1 out of 5]
,name[The Cricketers]
,area[riverside]
,priceRange[£20-25]
,name[Blue Spice]
,priceRange[moderate]
,priceRange[less than £20]
,priceRange[high]
,name[Giraffe]
,name[The Golden Curry]
,customer rating[average]
,name[The Twenty Two]
,name[Aromi]
,food[Fast food]
,name[Browns Cambridge]
,near[Café Rouge]
,area[city centre]
,familyFriendly[no]
,food[Chinese]
,name[Taste of Cambridge]
,food[Italian]
,name[Zizzi]
,near[Raja Indian Cuisine]
,priceRange[more than £30]
,name[The Punter]
,food[English]
,near[Clare Hall]
,near[The Portland Arms]
,name[The Cambridge Blue]
,near[The Sorrento]
,near[Café Brazil]
,familyFriendly[yes]
,name[Fitzbillies]
How to use
document = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
use = UniversalSentenceEncoder.pretrained() \
.setInputCols(["document"])\
.setOutputCol("use_embeddings")
docClassifier = MultiClassifierDLModel.pretrained("multiclassifierdl_use_e2e") \
.setInputCols(["use_embeddings"])\
.setOutputCol("category")\
.setThreshold(0.5)
pipeline = Pipeline(
stages = [
document,
use,
docClassifier
])
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
.setCleanupMode("shrink")
val use = UniversalSentenceEncoder.pretrained()
.setInputCols("document")
.setOutputCol("use_embeddings")
val docClassifier = MultiClassifierDLModel.pretrained("multiclassifierdl_use_e2e")
.setInputCols("use_embeddings")
.setOutputCol("category")
.setThreshold(0.5f)
val pipeline = new Pipeline()
.setStages(
Array(
documentAssembler,
use,
docClassifier
)
)
import nlu
nlu.load("en.classify.e2e").predict("""Put your text here.""")
Model Information
Model Name: | multiclassifierdl_use_e2e |
Compatibility: | Spark NLP 2.7.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [use_embeddings] |
Output Labels: | [category] |
Language: | en |
Data Source
http://www.macs.hw.ac.uk/InteractionLab/E2E/
Benchmarking
Summary Statistics
Accuracy = 0.6366936009433872
F1 measure = 0.7561380632067716
Precision = 0.8678456763698633
Recall = 0.6911700403620353
Micro F1 measure = 0.7750978356361313
Micro precision = 0.8694288913773797
Micro recall = 0.6992326812925538