Description
This model annotates the part of speech of tokens in a text. The parts of speech annotated include PRON (pronoun), CCONJ (coordinating conjunction), and 13 others. The part of speech model is useful for extracting the grammatical structure of a piece of text automatically.
Predicted Entities
ADJ
, ADP
, ADV
, AUX
, CONJ
, DET
, NOUN
, NUM
, PART
, PRON
, PROPN
, PUNCT
, SYM
, VERB
, and X
.
Live Demo Open in Colab Download Copy S3 URI
How to use
Use as part of an nlp pipeline after tokenization.
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
word_segmenter = WordSegmenterModel.pretrained("wordseg_gsd_ud_trad", "zh")\
.setInputCols(["sentence"])\
.setOutputCol("token")
pos = PerceptronModel.pretrained("pos_ud_gsd_trad", "zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("pos")
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
word_segmenter,
posTagger
])
example = spark.createDataFrame([['然而,這樣的處理也衍生了一些問題。']], ["text"])
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val word_segmenter = WordSegmenterModel.pretrained("wordseg_gsd_ud_trad", "zh")
.setInputCols("sentence")
.setOutputCol("token")
val pos = PerceptronModel.pretrained("pos_ud_gsd_trad", "zh")
.setInputCols(Array("document", "token"))
.setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, word_segmenter, pos))
val data = Seq("然而,這樣的處理也衍生了一些問題。").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = ["""然而,這樣的處理也衍生了一些問題。"""]
pos_df = nlu.load('zh.pos.ud_gsd_trad').predict(text, output_level = "token")
pos_df
Results
+------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------+
|text |result |
+------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------+
|然而 , 這樣 的 處理 也 衍生 了 一些 問題 。 |[ADV, PUNCT, PRON, PART, NOUN, ADV, VERB, PART, ADJ, NOUN, PUNCT] |
+------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------+
Model Information
Model Name: | pos_ud_gsd_trad |
Compatibility: | Spark NLP 2.7.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [pos] |
Language: | zh |
Data Source
The model was trained on the Universal Dependencies for Traditional Chinese annotated and converted by Google.
Benchmarking
| | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| ADJ | 0.70 | 0.68 | 0.69 | 272 |
| ADP | 0.85 | 0.86 | 0.85 | 535 |
| ADV | 0.90 | 0.90 | 0.90 | 549 |
| AUX | 0.88 | 0.88 | 0.88 | 281 |
| CCONJ | 0.92 | 0.87 | 0.89 | 191 |
| DET | 0.93 | 0.93 | 0.93 | 138 |
| NOUN | 0.88 | 0.92 | 0.90 | 3312 |
| NUM | 0.98 | 0.99 | 0.98 | 653 |
| PART | 0.97 | 0.94 | 0.95 | 1359 |
| PRON | 0.97 | 0.97 | 0.97 | 168 |
| PROPN | 0.89 | 0.84 | 0.86 | 1006 |
| PUNCT | 1.00 | 1.00 | 1.00 | 1688 |
| SYM | 1.00 | 1.00 | 1.00 | 3 |
| VERB | 0.86 | 0.83 | 0.85 | 1769 |
| X | 1.00 | 0.88 | 0.93 | 88 |
| accuracy | | | 0.91 | 12012 |
| macro avg | 0.91 | 0.90 | 0.91 | 12012 |
| weighted avg | 0.91 | 0.91 | 0.91 | 12012 |