Description
A Part of Speech classifier predicts a grammatical label for every token in the input text. Implemented with an averaged perceptron architecture.
Predicted Entities
- ADJ
 - NOUN
 - ADP
 - VERB
 - PUNCT
 - PRON
 - ADV
 - SCONJ
 - NUM
 - AUX
 - PART
 - DET
 - CCONJ
 - PROPN
 - SYM
 - INTJ
 
Live Demo Open in Colab Download Copy S3 URI
How to use
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentence_detector = SentenceDetector() \
.setInputCols(["document"]) \
.setOutputCol("sentence")
pos = PerceptronModel.pretrained("pos_ud_tal", "sv") \
.setInputCols(["document", "token"]) \
.setOutputCol("pos")
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
posTagger
])
example = spark.createDataFrame([['Hej från John Snow Labs! ']], ["text"])
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val pos = PerceptronModel.pretrained("pos_ud_tal", "sv")
.setInputCols(Array("document", "token"))
.setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, pos))
val data = Seq("Hej från John Snow Labs! ").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = [""Hej från John Snow Labs! ""]
token_df = nlu.load('sv.pos.ud_tal').predict(text)
token_df
Results
token    pos
0   Hej   NOUN
1  från    ADP
2  John  PROPN
3  Snow  PROPN
4  Labs  PROPN
5     !  PUNCT
Model Information
| Model Name: | pos_ud_tal | 
| Compatibility: | Spark NLP 3.0.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [pos] | 
| Language: | sv |