Description
The entity_recognizer_sm is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe
Open in Colab Download Copy S3 URI
How to use
from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('entity_recognizer_sm', lang = 'ru')
annotations = pipeline.fullAnnotate(""Здравствуйте из Джона Снежных Лабораторий! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("entity_recognizer_sm", lang = "ru")
val result = pipeline.fullAnnotate("Здравствуйте из Джона Снежных Лабораторий! ")(0)
import nlu
text = [""Здравствуйте из Джона Снежных Лабораторий! ""]
result_df = nlu.load('ru.ner').predict(text)
result_df
Results
| | document | sentence | token | embeddings | ner | entities |
|---:|:------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------|:-----------------------------|:--------------------------------------|:-------------------------------|
| 0 | ['Здравствуйте из Джона Снежных Лабораторий! '] | ['Здравствуйте из Джона Снежных Лабораторий!'] | ['Здравствуйте', 'из', 'Джона', 'Снежных', 'Лабораторий!'] | [[0.0, 0.0, 0.0, 0.0,.,...]] | ['O', 'O', 'B-PER', 'I-PER', 'I-PER'] | ['Джона Снежных Лабораторий!'] |
Model Information
Model Name: | entity_recognizer_sm |
Type: | pipeline |
Compatibility: | Spark NLP 3.0.0+ |
License: | Open Source |
Edition: | Official |
Language: | ru |