Description
A Part of Speech classifier predicts a grammatical label for every token in the input text. Implemented with an averaged perceptron
architecture.
Predicted Entities
- ADJ
- ADP
- ADV
- AUX
- CCONJ
- DET
- INTJ
- NOUN
- NUM
- PART
- PRON
- PROPN
- PUNCT
- SCONJ
- SYM
- VERB
Live Demo Open in Colab Download Copy S3 URI
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
pos = PerceptronModel.pretrained("pos_cac", "cs")\
.setInputCols(["document", "token"])\
.setOutputCol("pos")
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
posTagger
])
example = spark.createDataFrame([["'Soustředit všechny propagační a agitační prostředky na vytvoření veřejného mínění , které bude podporovat přesnou , tvořivou a iniciativní práci ."]], ["text"])
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val pos = PerceptronModel.pretrained("pos_cac", "cs")
.setInputCols(Array("document", "token"))
.setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector,tokenizer , pos))
val data = Seq("'Soustředit všechny propagační a agitační prostředky na vytvoření veřejného mínění , které bude podporovat přesnou , tvořivou a iniciativní práci .").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
text = [""Soustředit všechny propagační a agitační prostředky na vytvoření veřejného mínění , které bude podporovat přesnou , tvořivou a iniciativní práci .""]
token_df = nlu.load('cs.pos.cac').predict(text)
token_df
Results
+---------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------+
|text |result |
+---------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------+
|'Soustředit všechny propagační a agitační prostředky na vytvoření veřejného mínění , které bude podporovat přesnou , tvořivou a iniciativní práci .|[NOUN, VERB, DET, ADJ, CCONJ, ADJ, NOUN, ADP, NOUN, ADJ, NOUN, PUNCT, DET, AUX, VERB, ADJ, PUNCT, ADJ, CCONJ, ADJ, NOUN, PUNCT]|
+---------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------+
Model Information
Model Name: | pos_cac |
Compatibility: | Spark NLP 2.7.5+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [pos] |
Language: | cs |
Data Source
The model was trained on the Universal Dependencies data set.
Benchmarking
| | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| ADJ | 0.96 | 0.97 | 0.97 | 1597 |
| ADP | 1.00 | 0.99 | 1.00 | 1031 |
| ADV | 0.99 | 0.97 | 0.98 | 552 |
| AUX | 0.93 | 0.97 | 0.95 | 302 |
| CCONJ | 1.00 | 1.00 | 1.00 | 575 |
| DET | 1.00 | 0.98 | 0.99 | 418 |
| INTJ | 1.00 | 1.00 | 1.00 | 1 |
| NOUN | 0.97 | 0.98 | 0.97 | 3023 |
| NUM | 1.00 | 0.97 | 0.99 | 103 |
| PART | 0.99 | 0.92 | 0.96 | 92 |
| PRON | 0.98 | 0.97 | 0.98 | 353 |
| PROPN | 0.93 | 0.91 | 0.92 | 138 |
| PUNCT | 1.00 | 1.00 | 1.00 | 1423 |
| SCONJ | 0.99 | 0.99 | 0.99 | 175 |
| SYM | 1.00 | 1.00 | 1.00 | 39 |
| VERB | 0.97 | 0.94 | 0.95 | 1040 |
| accuracy | | | 0.98 | 10862 |
| macro avg | 0.98 | 0.97 | 0.98 | 10862 |
| weighted avg | 0.98 | 0.98 | 0.98 | 10862 |