Description
The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the OPUS corpora collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens.
How to use
embeddings = BertEmbeddings.pretrained("bert_base_italian_uncased", "it") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
val embeddings = BertEmbeddings.pretrained("bert_base_italian_uncased", "it")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
import nlu
nlu.load("it.embed.bert.uncased").predict("""Put your text here.""")
Model Information
Model Name: | bert_base_italian_uncased |
Compatibility: | Spark NLP 3.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, sentence] |
Output Labels: | [embeddings] |
Language: | it |
Case sensitive: | true |