Description
This model is a distilled version of the RoBERTa-base model. It follows the same training procedure as DistilBERT.
The code for the distillation process can be found here. This model is case-sensitive: it makes a difference between english and English.
The model has 6 layers, 768 dimensions, and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base). On average DistilRoBERTa is twice as fast as Roberta-base.
How to use
embeddings = RoBertaEmbeddings.pretrained("distilroberta_base", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
val embeddings = RoBertaEmbeddings.pretrained("distilroberta_base", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
import nlu
nlu.load("en.embed.distilroberta").predict("""Put your text here.""")
Model Information
Model Name: | distilroberta_base |
Compatibility: | Spark NLP 3.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, sentence] |
Output Labels: | [embeddings] |
Language: | en |
Case sensitive: | true |
Data Source
https://huggingface.co/distilroberta-base
Benchmarking
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 84.0 | 89.4 | 90.8 | 92.5 | 59.3 | 88.3 | 86.6 | 67.9 |