Detect Movie Entities - MIT Movie Complex (ner_mit_movie_complex_distilbert_base_cased)

Description

This NER model was trained over the MIT Movie Corpus complex queries dataset to detect movie trivia. We used DistilBertEmbeddings (distilbert_base_cased) model for the embeddings to train this NER model.

Predicted Entities

  • Actor
  • Award
  • Character_Name
  • Director
  • Genre
  • Opinion
  • Origin
  • Plot
  • Quote
  • Relationship
  • Soundtrack
  • Year

Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

embeddings = DistilBertEmbeddings\
.pretrained('distilbert_base_cased', 'en')\
.setInputCols(["token", "document"])\
.setOutputCol("embeddings")

ner_model = NerDLModel.pretrained('ner_mit_movie_complex_distilbert_base_cased', 'en') \
.setInputCols(['document', 'token', 'embeddings']) \
.setOutputCol('ner')

ner_converter = NerConverter() \
.setInputCols(['document', 'token', 'ner']) \
.setOutputCol('entities')

pipeline = Pipeline(stages=[
document_assembler, 
tokenizer,
embeddings,
ner_model,
ner_converter
])

example = spark.createDataFrame(pd.DataFrame({'text': ['My name is John!']}))
result = pipeline.fit(example).transform(example)

val document_assembler = DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val tokenizer = Tokenizer() 
.setInputCols("document") 
.setOutputCol("token")

val embeddings = DistilBertEmbeddings.pretrained("distilbert_base_cased", "en")
.setInputCols("document", "token") 
.setOutputCol("embeddings")

val ner_model = NerDLModel.pretrained("ner_mit_movie_complex_distilbert_base_cased", "en") 
.setInputCols("document"', "token", "embeddings") 
.setOutputCol("ner")

val ner_converter = NerConverter() 
.setInputCols("document", "token", "ner") 
.setOutputCol("entities")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, embeddings, ner_model, ner_converter))
val result = pipeline.fit(Seq.empty["My name is John!"].toDS.toDF("text")).transform(data)
import nlu

text = ["My name is John!"]

ner_df = nlu.load('en.ner.ner_mit_movie_complex_distilbert_base_cased').predict(text, output_level='token')

Model Information

Model Name: ner_mit_movie_complex_distilbert_base_cased
Type: ner
Compatibility: Spark NLP 3.1.3+
License: Open Source
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en

Data Source

https://groups.csail.mit.edu/sls/downloads/movie/

Benchmarking

processed 15904 tokens with 2278 phrases; found: 2277 phrases; correct: 1674.
accuracy:  89.18%; (non-O)
accuracy:  88.41%; precision:  73.52%; recall:  73.49%; FB1:  73.50
Actor: precision:  96.50%; recall:  96.13%; FB1:  96.32  515
Award: precision:  51.85%; recall:  41.18%; FB1:  45.90  27
Character_Name: precision:  72.53%; recall:  74.16%; FB1:  73.33  91
Director: precision:  81.77%; recall:  87.71%; FB1:  84.64  192
Genre: precision:  75.00%; recall:  74.54%; FB1:  74.77  324
Opinion: precision:  41.94%; recall:  48.15%; FB1:  44.83  93
Origin: precision:  37.70%; recall:  32.39%; FB1:  34.85  61
Plot: precision:  53.43%; recall:  53.60%; FB1:  53.51  627
Quote: precision:  56.25%; recall:  39.13%; FB1:  46.15  16
Relationship: precision:  55.10%; recall:  56.25%; FB1:  55.67  49
Soundtrack: precision:  42.86%; recall:  42.86%; FB1:  42.86  7
Year: precision:  94.91%; recall:  93.88%; FB1:  94.39  275