BERT Token Classification - NER OntoNotes (bert_base_token_classifier_ontonote)

Description

BERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

bert_base_token_classifier_ontonote is a fine-tuned BERT model that is ready to use for Named Entity Recognition and achieves state-of-the-art performance for the NER task. This model has been trained to recognize four types of entities: CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, and WORK_OF_ART.

We used TFBertForTokenClassification to train this model and used BertForTokenClassification annotator in Spark NLP 🚀 for prediction at scale!

Predicted Entities

CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

tokenClassifier = BertForTokenClassification \
.pretrained('bert_base_token_classifier_ontonote', 'en') \
.setInputCols(['token', 'document']) \
.setOutputCol('ner') \
.setCaseSensitive(True) \
.setMaxSentenceLength(512)

# since output column is IOB/IOB2 style, NerConverter can extract entities
ner_converter = NerConverter() \
.setInputCols(['document', 'token', 'ner']) \
.setOutputCol('entities')

pipeline = Pipeline(stages=[
document_assembler, 
tokenizer,
tokenClassifier,
ner_converter
])

example = spark.createDataFrame([['My name is John!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val tokenizer = Tokenizer() 
.setInputCols("document") 
.setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_base_token_classifier_ontonote", "en")
.setInputCols("document", "token")
.setOutputCol("ner")
.setCaseSensitive(true)
.setMaxSentenceLength(512)

// since output column is IOB/IOB2 style, NerConverter can extract entities
val ner_converter = NerConverter() 
.setInputCols("document", "token", "ner") 
.setOutputCol("entities")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, tokenClassifier, ner_converter))

val example = Seq.empty["My name is John!"].toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.classify.token_bert.ontonote").predict("""My name is John!""")

Results

+------------------------------------------------------------------------------------+
|result                                                                              |
+------------------------------------------------------------------------------------+
|[B-PERSON, I-PERSON, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PERSON, O, O, O, O, B-LOC]|
+------------------------------------------------------------------------------------+

Model Information

Model Name: bert_base_token_classifier_ontonote
Compatibility: Spark NLP 3.2.0+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [ner]
Language: en
Case sensitive: true
Max sentense length: 512

Data Source

https://catalog.ldc.upenn.edu/LDC2013T19

Benchmarking

Test:

precision    recall  f1-score   support

B-CARDINAL       0.86      0.88      0.87       935
B-DATE       0.88      0.90      0.89      1602
B-EVENT       0.71      0.62      0.66        63
B-FAC       0.75      0.76      0.76       135
B-GPE       0.97      0.91      0.94      2240
B-LANGUAGE       0.79      0.68      0.73        22
B-LAW       0.76      0.65      0.70        40
B-LOC       0.78      0.83      0.80       179
B-MONEY       0.88      0.90      0.89       314
B-NORP       0.92      0.96      0.94       841
B-ORDINAL       0.81      0.93      0.87       195
B-ORG       0.87      0.89      0.88      1795
B-PERCENT       0.92      0.95      0.93       349
B-PERSON       0.96      0.95      0.95      1988
B-PRODUCT       0.75      0.78      0.76        76
B-QUANTITY       0.81      0.82      0.82       105
B-TIME       0.69      0.70      0.69       212
B-WORK_OF_ART       0.66      0.74      0.70       166
I-CARDINAL       0.83      0.88      0.86       331
I-DATE       0.89      0.92      0.90      2011
I-EVENT       0.70      0.71      0.70       130
I-FAC       0.82      0.85      0.84       213
I-GPE       0.96      0.89      0.93       628
I-LAW       0.85      0.65      0.74       106
I-LOC       0.85      0.84      0.84       180
I-MONEY       0.94      0.96      0.95       685
I-NORP       0.99      0.79      0.88       160
I-ORDINAL       0.00      0.00      0.00         4
I-ORG       0.91      0.93      0.92      2406
I-PERCENT       0.95      0.95      0.95       523
I-PERSON       0.96      0.96      0.96      1412
I-PRODUCT       0.81      0.80      0.80        69
I-QUANTITY       0.83      0.92      0.87       206
I-TIME       0.71      0.77      0.74       255
I-WORK_OF_ART       0.71      0.66      0.68       337
O       0.99      0.99      0.99    131815

accuracy                           0.98    152728
macro avg       0.82      0.81      0.82    152728
weighted avg       0.98      0.98      0.98    152728



processed 152728 tokens with 11257 phrases; found: 11537 phrases; correct: 9906.
accuracy:  90.22%; (non-O)
accuracy:  98.00%; precision:  85.86%; recall:  88.00%; FB1:  86.92
CARDINAL: precision:  83.35%; recall:  86.20%; FB1:  84.75  967
DATE: precision:  82.23%; recall:  86.95%; FB1:  84.53  1694
EVENT: precision:  58.06%; recall:  57.14%; FB1:  57.60  62
FAC: precision:  68.67%; recall:  76.30%; FB1:  72.28  150
GPE: precision:  95.59%; recall:  90.00%; FB1:  92.71  2109
LANGUAGE: precision:  78.95%; recall:  68.18%; FB1:  73.17  19
LAW: precision:  63.16%; recall:  60.00%; FB1:  61.54  38
LOC: precision:  71.29%; recall:  80.45%; FB1:  75.59  202
MONEY: precision:  85.40%; recall:  87.58%; FB1:  86.48  322
NORP: precision:  89.82%; recall:  93.34%; FB1:  91.55  874
ORDINAL: precision:  81.17%; recall:  92.82%; FB1:  86.60  223
ORG: precision:  82.80%; recall:  86.35%; FB1:  84.54  1872
PERCENT: precision:  86.23%; recall:  89.68%; FB1:  87.92  363
PERSON: precision:  93.93%; recall:  94.22%; FB1:  94.07  1994
PRODUCT: precision:  70.37%; recall:  75.00%; FB1:  72.61  81
QUANTITY: precision:  73.28%; recall:  80.95%; FB1:  76.92  116
TIME: precision:  58.02%; recall:  66.51%; FB1:  61.98  243
WORK_OF_ART: precision:  52.40%; recall:  65.66%; FB1:  58.29  208