BERT Token Classification Large - NER OntoNotes (bert_large_token_classifier_ontonote)

Description

BERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

bert_large_token_classifier_ontonote is a fine-tuned BERT model that is ready to use for Named Entity Recognition and achieves state-of-the-art performance for the NER task. This model has been trained to recognize four types of entities: CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, and WORK_OF_ART.

We used TFBertForTokenClassification to train this model and used BertForTokenClassification annotator in Spark NLP 🚀 for prediction at scale!

Predicted Entities

CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

tokenClassifier = BertForTokenClassification \
.pretrained('bert_large_token_classifier_ontonote', 'en') \
.setInputCols(['token', 'document']) \
.setOutputCol('ner') \
.setCaseSensitive(True) \
.setMaxSentenceLength(512)

# since output column is IOB/IOB2 style, NerConverter can extract entities
ner_converter = NerConverter() \
.setInputCols(['document', 'token', 'ner']) \
.setOutputCol('entities')

pipeline = Pipeline(stages=[
document_assembler, 
tokenizer,
tokenClassifier,
ner_converter
])

example = spark.createDataFrame([['My name is John!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val tokenizer = Tokenizer() 
.setInputCols("document") 
.setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_large_token_classifier_ontonote", "en")
.setInputCols("document", "token")
.setOutputCol("ner")
.setCaseSensitive(true)
.setMaxSentenceLength(512)

// since output column is IOB/IOB2 style, NerConverter can extract entities
val ner_converter = NerConverter() 
.setInputCols("document", "token", "ner") 
.setOutputCol("entities")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, tokenClassifier, ner_converter))

val example = Seq.empty["My name is John!"].toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.classify.token_bert.large_ontonote").predict("""My name is John!""")

Results

+------------------------------------------------------------------------------------+
|result                                                                              |
+------------------------------------------------------------------------------------+
|[B-PERSON, I-PERSON, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PERSON, O, O, O, O, B-LOC]|
+------------------------------------------------------------------------------------+

Model Information

Model Name: bert_large_token_classifier_ontonote
Compatibility: Spark NLP 3.2.0+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [ner]
Language: en
Case sensitive: true
Max sentense length: 512

Data Source

https://catalog.ldc.upenn.edu/LDC2013T19

Benchmarking

Test:

precision    recall  f1-score   support

B-CARDINAL       0.86      0.86      0.86       935
B-DATE       0.88      0.89      0.88      1602
B-EVENT       0.76      0.67      0.71        63
B-FAC       0.77      0.84      0.81       135
B-GPE       0.98      0.92      0.95      2240
B-LANGUAGE       0.79      0.68      0.73        22
B-LAW       0.77      0.68      0.72        40
B-LOC       0.73      0.82      0.78       179
B-MONEY       0.90      0.89      0.89       314
B-NORP       0.94      0.96      0.95       841
B-ORDINAL       0.82      0.91      0.87       195
B-ORG       0.90      0.91      0.91      1795
B-PERCENT       0.94      0.93      0.94       349
B-PERSON       0.95      0.96      0.95      1988
B-PRODUCT       0.79      0.80      0.80        76
B-QUANTITY       0.82      0.83      0.82       105
B-TIME       0.69      0.69      0.69       212
B-WORK_OF_ART       0.71      0.72      0.71       166
I-CARDINAL       0.83      0.89      0.86       331
I-DATE       0.90      0.90      0.90      2011
I-EVENT       0.76      0.74      0.75       130
I-FAC       0.79      0.91      0.85       213
I-GPE       0.94      0.89      0.92       628
I-LAW       0.82      0.66      0.73       106
I-LOC       0.89      0.83      0.86       180
I-MONEY       0.94      0.96      0.95       685
I-NORP       0.98      0.91      0.94       160
I-ORDINAL       0.00      0.00      0.00         4
I-ORG       0.92      0.93      0.93      2406
I-PERCENT       0.96      0.95      0.96       523
I-PERSON       0.97      0.94      0.96      1412
I-PRODUCT       0.81      0.81      0.81        69
I-QUANTITY       0.87      0.92      0.89       206
I-TIME       0.68      0.73      0.70       255
I-WORK_OF_ART       0.72      0.66      0.69       337
O       0.99      0.99      0.99    131815

accuracy                           0.98    152728
macro avg       0.83      0.82      0.82    152728
weighted avg       0.98      0.98      0.98    152728



processed 152728 tokens with 11257 phrases; found: 11394 phrases; correct: 10001.
accuracy:  90.30%; (non-O)
accuracy:  98.10%; precision:  87.77%; recall:  88.84%; FB1:  88.31
CARDINAL: precision:  83.37%; recall:  84.17%; FB1:  83.77  944
DATE: precision:  83.84%; recall:  86.14%; FB1:  84.98  1646
EVENT: precision:  64.06%; recall:  65.08%; FB1:  64.57  64
FAC: precision:  69.38%; recall:  82.22%; FB1:  75.25  160
GPE: precision:  96.64%; recall:  91.25%; FB1:  93.87  2115
LANGUAGE: precision:  78.95%; recall:  68.18%; FB1:  73.17  19
LAW: precision:  54.76%; recall:  57.50%; FB1:  56.10  42
LOC: precision:  70.10%; recall:  79.89%; FB1:  74.67  204
MONEY: precision:  87.70%; recall:  88.54%; FB1:  88.11  317
NORP: precision:  93.60%; recall:  95.72%; FB1:  94.65  860
ORDINAL: precision:  82.41%; recall:  91.28%; FB1:  86.62  216
ORG: precision:  87.26%; recall:  89.30%; FB1:  88.27  1837
PERCENT: precision:  89.43%; recall:  89.68%; FB1:  89.56  350
PERSON: precision:  93.70%; recall:  95.02%; FB1:  94.36  2016
PRODUCT: precision:  68.29%; recall:  73.68%; FB1:  70.89  82
QUANTITY: precision:  78.57%; recall:  83.81%; FB1:  81.11  112
TIME: precision:  58.85%; recall:  62.74%; FB1:  60.73  226
WORK_OF_ART: precision:  61.96%; recall:  68.67%; FB1:  65.14  184