Description
This model uses a BERT base architecture initialized from https://tfhub.dev/google/experts/bert/wiki_books/1 and fine-tuned on QNLI.
This is a BERT base architecture but some changes have been made to the original training and export scheme based on more recent learnings.
How to use
embeddings = BertEmbeddings.pretrained("bert_wiki_books_qnli", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings])
val embeddings = BertEmbeddings.pretrained("bert_wiki_books_qnli", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings))
import nlu
text = ["I love NLP"]
embeddings_df = nlu.load('en.embed.bert.wiki_books_qnli').predict(text, output_level='token')
embeddings_df
Model Information
Model Name: | bert_wiki_books_qnli |
Compatibility: | Spark NLP 3.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | en |
Case sensitive: | false |
Data Source
This Model has been imported from: https://tfhub.dev/google/experts/bert/wiki_books/qnli/2