Description
This model uses a BERT base architecture initialized from https://tfhub.dev/google/experts/bert/pubmed/1 and fine-tuned on SQuAD 2.0. This is a BERT base architecture but some changes have been made to the original training and export scheme based on more recent learnings.
This model is intended to be used for a variety of English NLP tasks in the medical domain. This model is fine-tuned on the SQuAD 2.0 as a span-labeling task to label the answer to a question in a given context and is recommended for use in question answering tasks.
How to use
sent_embeddings = BertSentenceEmbeddings.pretrained("sent_bert_pubmed_squad2", "en") \
.setInputCols("sentence") \
.setOutputCol("bert_sentence")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, sent_embeddings ])
val sent_embeddings = BertSentenceEmbeddings.pretrained("sent_bert_pubmed_squad2", "en")
.setInputCols("sentence")
.setOutputCol("bert_sentence")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, sent_embeddings ))
import nlu
text = ["I love NLP"]
sent_embeddings_df = nlu.load('en.embed_sentence.bert.pubmed_squad2').predict(text, output_level='sentence')
sent_embeddings_df
Model Information
Model Name: | sent_bert_pubmed_squad2 |
Compatibility: | Spark NLP 3.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [bert_sentence] |
Language: | en |
Case sensitive: | false |
Data Source
This Model has been imported from: https://tfhub.dev/google/experts/bert/pubmed/squad2/2