Description
xlm_roberta_base_finetuned_amharic is a Amharic RoBERTa model obtained by fine-tuning xlm-roberta-base model on Amharic language texts. It provides better performance than the XLM-RoBERTa on named entity recognition datasets.
Specifically, this model is an xlm-roberta-base model that was fine-tuned on the Amharic corpus.
Predicted Entities
How to use
embeddings = XlmRoBertaEmbeddings.pretrained("xlm_roberta_base_finetuned_amharic", "am") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
val embeddings = XlmRoBertaEmbeddings.pretrained("xlm_roberta_base_finetuned_amharic", "am")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
import nlu
nlu.load("am.embed.xlm_roberta").predict("""Put your text here.""")
Model Information
Model Name: | xlm_roberta_base_finetuned_amharic |
Compatibility: | Spark NLP 3.3.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, sentence] |
Output Labels: | [embeddings] |
Language: | am |
Case sensitive: | true |
Data Source
https://huggingface.co/Davlan/xlm-roberta-base-finetuned-amharic
Benchmarking
## Eval results on the Test set (F-score, average over 5 runs)
Dataset| XLM-R F1 | am_roberta F1
-|-|-
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 70.96 | 77.97