Description
xlm_roberta_base_finetuned_igbo is a Igbo RoBERTa model obtained by fine-tuning xlm-roberta-base model on Igbo language texts. It provides better performance than the XLM-RoBERTa on named entity recognition datasets.
Specifically, this model is an xlm-roberta-base model that was fine-tuned on the Igbo corpus.
Predicted Entities
How to use
embeddings = XlmRoBertaEmbeddings.pretrained("xlm_roberta_base_finetuned_igbo", "ig") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
val embeddings = XlmRoBertaEmbeddings.pretrained("xlm_roberta_base_finetuned_igbo", "ig")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
import nlu
nlu.load("ig.embed.xlm_roberta").predict("""Put your text here.""")
Model Information
Model Name: | xlm_roberta_base_finetuned_igbo |
Compatibility: | Spark NLP 3.3.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, sentence] |
Output Labels: | [embeddings] |
Language: | ig |
Case sensitive: | true |
Data Source
https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo
Benchmarking
## Eval results on Test set (F-score, average over 5 runs)
Dataset| XLM-R F1 | ig_roberta F1
-|-|-
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 84.51 | 87.74