BERT Sequence Classification Multilingual - AlloCine (bert_multilingual_sequence_classifier_allocine)

Description

BERT Model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.

bert_multilingual_sequence_classifier_allocine is a fine-tuned BERT model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.

We used TFBertForSequenceClassification to train this model and used BertForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!

Predicted Entities

neg, pos

Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')

tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')

sequenceClassifier = BertForSequenceClassification \
      .pretrained('bert_multilingual_sequence_classifier_allocine', 'fr') \
      .setInputCols(['token', 'document']) \
      .setOutputCol('class') \
      .setCaseSensitive(True) \
      .setMaxSentenceLength(512)

pipeline = Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

example = spark.createDataFrame([['j'ai bien aime le film harry potter!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = BertForSequenceClassification.pretrained("bert_multilingual_sequence_classifier_allocine", "fr")
      .setInputCols("document", "token")
      .setOutputCol("class")
      .setCaseSensitive(true)
      .setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val example = Seq("j'ai bien aime le film harry potter!").toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("fr.classify.bert.multilingual").predict("""Put your text here.""")

Results

 * +--------------------+
 * |result              |
 * +--------------------+
 * |[neg, neg]          |
 * |[pos, pos, pos, pos]|
 * +--------------------+

Model Information

Model Name: bert_multilingual_sequence_classifier_allocine
Compatibility: Spark NLP 3.3.2+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [class]
Language: fr
Case sensitive: true
Max sentense length: 512

Data Source

https://huggingface.co/datasets/allocine

Benchmarking

           precision    recall  f1-score   support

         neg       0.95      0.96      0.96     10294
         pos       0.96      0.95      0.95      9706

    accuracy                           0.95     20000
   macro avg       0.95      0.95      0.95     20000
weighted avg       0.95      0.95      0.95     20000