BERT Sequence Classification - Japanese Sentiment (bert_sequence_classifier_japanese_sentiment)

Description

BERT Model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.

bert_sequence_classifier_japanese_sentiment is a fine-tuned BERT model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.

Predicted Entities

ポジティブ, ネガティブ

Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')

tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')

sequenceClassifier = BertForSequenceClassification \
      .pretrained('bert_sequence_classifier_japanese_sentiment', 'ja') \
      .setInputCols(['token', 'document']) \
      .setOutputCol('class') \
      .setCaseSensitive(True) \
      .setMaxSentenceLength(512)

pipeline = Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

example = spark.createDataFrame([['私は幸福である。']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_japanese_sentiment", "ja")
      .setInputCols("document", "token")
      .setOutputCol("class")
      .setCaseSensitive(true)
      .setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val example = Seq("私は幸福である。").toDS.toDF("text")

Model Information

Model Name: bert_sequence_classifier_japanese_sentiment
Compatibility: Spark NLP 3.3.2+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [class]
Language: ja
Case sensitive: false
Max sentense length: 512

Data Source

https://huggingface.co/daigo/bert-base-japanese-sentiment