Description
This model is imported from Hugging Face-models and it was trained on 4K tweets, where ~50% were labeled as antisemitic. The model identifies if the text is antisemitic or not.
1: Antisemitic0: Non-antisemitic
Predicted Entities
1, 0
How to use
document_assembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')
tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')
sequenceClassifier = BertForSequenceClassification \
      .pretrained('bert_sequence_classifier_antisemitism', 'en') \
      .setInputCols(['token', 'document']) \
      .setOutputCol('class')
pipeline = Pipeline(stages=[document_assembler, tokenizer, sequenceClassifier])
example = spark.createDataFrame([["The Jews have too much power!"]]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
val tokenizer = Tokenizer() 
    .setInputCols("document") 
    .setOutputCol("token")
val tokenClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_antisemitism", "en")
      .setInputCols("document", "token")
      .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val example = Seq.empty["The Jews have too much power!"].toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.classify.bert").predict("""The Jews have too much power!""")
Results
['1']
Model Information
| Model Name: | bert_sequence_classifier_antisemitism | 
| Compatibility: | Spark NLP 3.3.2+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [token, sentence] | 
| Output Labels: | [label] | 
| Language: | en | 
| Case sensitive: | true | 
Data Source
https://huggingface.co/astarostap/autonlp-antisemitism-2-21194454