Description
This model is imported from Hugging Face-models. It is a BERT-Tiny version of the sms_spam dataset. It identifies if the SMS is spam or not.
- LABEL_0: No Spam
- LABEL_1: Spam
Predicted Entities
LABEL_0, LABEL_1
How to use
document_assembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')
tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')
sequenceClassifier = BertForSequenceClassification \
      .pretrained('bert_sequence_classifier_sms_spam', 'en') \
      .setInputCols(['token', 'document']) \
      .setOutputCol('class') \
      .setCaseSensitive(True) \
      .setMaxSentenceLength(512)
pipeline = Pipeline(stages=[document_assembler, tokenizer, sequenceClassifier])
example = spark.createDataFrame([['Camera - You are awarded a SiPix Digital Camera! call 09061221066 from landline. Delivery within 28 days.']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val tokenizer = Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val tokenClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_sms_spam", "en")
      .setInputCols("document", "token")
      .setOutputCol("class")
      .setCaseSensitive(true)
      .setMaxSentenceLength(512)
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val example = Seq.empty["Camera - You are awarded a SiPix Digital Camera! call 09061221066 from landline. Delivery within 28 days."].toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.classify.bert.sms_spam.").predict("""Camera - You are awarded a SiPix Digital Camera! call 09061221066 from landline. Delivery within 28 days.""")
Results
['LABEL_1']
Model Information
| Model Name: | bert_sequence_classifier_sms_spam | 
| Compatibility: | Spark NLP 3.3.2+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [token, sentence] | 
| Output Labels: | [label] | 
| Language: | en | 
| Case sensitive: | true | 
Data Source
https://huggingface.co/mrm8488/bert-tiny-finetuned-sms-spam-detection
Benchmarking
   label  score
accuracy   0.98