Description
DistilBERT Model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
distilbert_base_sequence_classifier_imdb
is a fine-tuned DistilBERT model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.
We used TFDistilBertForSequenceClassification to train this model and used BertForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!
Predicted Entities
negative
, positive
How to use
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
sequenceClassifier = DistilBertForSequenceClassification \
.pretrained('distilbert_base_sequence_classifier_imdb', 'ur') \
.setInputCols(['token', 'document']) \
.setOutputCol('class') \
.setCaseSensitive(True) \
.setMaxSentenceLength(512)
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])
example = spark.createDataFrame([['یہ فلم واقعی اچھی تھی!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = DistilBertForSequenceClassification.pretrained("distilbert_base_sequence_classifier_imdb", "ur")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val example = Seq("یہ فلم واقعی اچھی تھی!").toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("ur.classify.distilbert_sequence.imdb").predict("""یہ فلم واقعی اچھی تھی!""")
Model Information
Model Name: | distilbert_base_sequence_classifier_imdb |
Compatibility: | Spark NLP 3.3.3+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, document] |
Output Labels: | [class] |
Language: | ur |
Case sensitive: | true |
Max sentense length: | 512 |
Data Source
https://huggingface.co/datasets/imdb_urdu_reviews
Benchmarking
precision recall f1-score support
negative 0.94 0.96 0.95 24285
positive 0.96 0.95 0.95 25715
accuracy 0.95 50000
macro avg 0.95 0.95 0.95 50000
weighted avg 0.95 0.95 0.95 50000