DistilBERT Sequence Classification - SST-2 (distilbert_sequence_classifier_sst2)

Description

This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2. This model reaches an accuracy of 91.3 on the dev set (for comparison, BERT’s bert-base-uncased version reaches an accuracy of 92.7).

Predicted Entities

NEGATIVE, POSITIVE

Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

sequenceClassifier = DistilBertForSequenceClassification \
.pretrained('distilbert_sequence_classifier_sst2', 'en') \
.setInputCols(['token', 'document']) \
.setOutputCol('class') \
.setMaxSentenceLength(512)

pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])

example = spark.createDataFrame([['I like you. I love you.']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val tokenClassifier = DistilBertForSequenceClassification.pretrained("distilbert_sequence_classifier_sst2", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val example = Seq("I like you. I love you.").toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.classify.distilbert_sequence.sst2").predict("""I like you. I love you.""")

Model Information

Model Name: distilbert_sequence_classifier_sst2
Compatibility: Spark NLP 3.3.3+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [class]
Language: en
Case sensitive: true
Max sentense length: 512

Data Source

https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

Benchmarking

This model reaches an accuracy of 91.3 on the dev set