Description
This model was imported from Hugging Face
and it’s been fine-tuned for the Russian language, leveraging Bert
embeddings and BertForSequenceClassification
for text classification purposes.
Predicted Entities
neutral
, toxic
Live Demo Open in Colab Download Copy S3 URI
How to use
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
sequenceClassifier = BertForSequenceClassification \
.pretrained('bert_sequence_classifier_toxicity', 'ru') \
.setInputCols(['token', 'document']) \
.setOutputCol('class')
pipeline = Pipeline(stages=[document_assembler, tokenizer, sequenceClassifier])
example = spark.createDataFrame([["Ненавижу тебя, идиот."]]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_toxicity", "ru")
.setInputCols("document", "token")
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val example = Seq.empty["Ненавижу тебя, идиот."].toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("ru.classify.toxic").predict("""Ненавижу тебя, идиот.""")
Results
['toxic']
Model Information
Model Name: | bert_sequence_classifier_toxicity |
Compatibility: | Spark NLP 3.3.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | ru |
Size: | 665.1 MB |
Case sensitive: | true |
Max sentense length: | 512 |
Data Source
https://huggingface.co/SkolkovoInstitute/russian_toxicity_classifier
Benchmarking
label precision recall f1-score support
neutral 0.98 0.99 0.98 21384
toxic 0.94 0.92 0.93 4886
accuracy - - 0.97 26270
macro-avg 0.96 0.96 0.96 26270
weighted-avg 0.97 0.97 0.97 26270