NER Model for 10 High Resourced Languages

Description

This model was imported from Hugging Face and it’s been fine-tuned for 10 high resourced languages (Arabic, German, English, Spanish, French, Italian, Latvian, Dutch, Portuguese and Chinese), leveraging XLM-RoBERTa embeddings and XlmRobertaForTokenClassification for NER purposes.

Predicted Entities

ORG, PER, LOC

Live Demo Open in Colab Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")

tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")

tokenClassifier = XlmRoBertaForTokenClassification.pretrained("xlm_roberta_large_token_classifier_hrl", "xx"))\
.setInputCols(["sentence",'token'])\
.setOutputCol("ner")

ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")

nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)
text = """يمكنكم مشاهدة أمير منطقة الرياض الأمير فيصل بن بندر بن عبد العزيز في كل مناسبة وافتتاح تتعلق بمشاريع التعليم والصحة وخدمة الطرق والمشاريع الثقافية في منطقة الرياض."""
result = model.transform(spark.createDataFrame([[text]]).toDF("text"))
val documentAssembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")

val tokenizer = Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")

val tokenClassifier = XlmRoBertaForTokenClassification.pretrained("xlm_roberta_large_token_classifier_hrl", "xx"))
.setInputCols(Array("sentence","token"))
.setOutputCol("ner")

ner_converter = NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")

val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter))

val example = Seq.empty["يمكنكم مشاهدة أمير منطقة الرياض الأمير فيصل بن بندر بن عبد العزيز في كل مناسبة وافتتاح تتعلق بمشاريع التعليم والصحة وخدمة الطرق والمشاريع الثقافية في منطقة الرياض."].toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("xx.ner.high_resourced_lang").predict("""يمكنكم مشاهدة أمير منطقة الرياض الأمير فيصل بن بندر بن عبد العزيز في كل مناسبة وافتتاح تتعلق بمشاريع التعليم والصحة وخدمة الطرق والمشاريع الثقافية في منطقة الرياض.""")

Results

+---------------------------+---------+
|chunk                      |ner_label|
+---------------------------+---------+
|الرياض                     |LOC      |
|فيصل بن بندر بن عبد العزيز |PER      |
|الرياض                     |LOC      |
+---------------------------+---------+

Model Information

Model Name: xlm_roberta_large_token_classifier_hrl
Compatibility: Spark NLP 3.3.4+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [ner]
Language: xx
Size: 1.8 GB
Case sensitive: true
Max sentense length: 256

Data Source

https://huggingface.co/Davlan/xlm-roberta-large-ner-hrl