Description
This model was imported from Hugging Face
and it’s been trained to detect time-related terminology, leveraging RoBERTa
embeddings and RobertaForTokenClassification
for NER purposes.
Predicted Entities
Period
, Year
, Calendar-Interval
, Month-Of-Year
, Day-Of-Month
, Day-Of-Week
, Hour-Of-Day
, Minute-Of-Hour
, Number
, Second-Of-Minute
, Time-Zone
, Part-Of-Day
, Season-Of-Year
, AMPM-Of-Day
, Part-Of-Week
, Week-Of-Year
, Two-Digit-Year
, Sum
, Difference
, Union
, Intersection
, Every-Nth
, This
, Last
, Next
, Before
, After
, Between
, NthFromStart
, NthFromEnd
, Frequency
, Modifier
Live Demo Open in Colab Download Copy S3 URI
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "en")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_token_classifier_timex_semeval", "en"))\
.setInputCols(["sentence",'token'])\
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = """Model training was started at 22:12C and it took 3 days from Tuesday to Friday."""
result = model.transform(spark.createDataFrame([[text]]).toDF("text"))
val documentAssembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "en")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = RoBertaForTokenClassification.pretrained("roberta_token_classifier_timex_semeval", "en"))
.setInputCols(Array("sentence","token"))
.setOutputCol("ner")
ner_converter = NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter))
val example = Seq.empty["Model training was started at 22:12C and it took 3 days from Tuesday to Friday."].toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.ner.time").predict("""Model training was started at 22:12C and it took 3 days from Tuesday to Friday.""")
Results
+-------+-----------------+
|chunk |ner_label |
+-------+-----------------+
|22:12C |Period |
|3 |Number |
|days |Calendar-Interval|
|Tuesday|Day-Of-Week |
|to |Between |
|Friday |Day-Of-Week |
+-------+-----------------+
Model Information
Model Name: | roberta_token_classifier_timex_semeval |
Compatibility: | Spark NLP 3.3.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 439.5 MB |
Case sensitive: | true |
Max sentense length: | 256 |