T5 for Informal to Formal Style Transfer

Description

This is a text-to-text model based on T5 fine-tuned to generate informal text from a formal text input, for the task “transfer Casual to Formal:”. It is based on Prithiviraj Damodaran’s Styleformer.

Predicted Entities

Live Demo Open in Colab Download Copy S3 URICopied!

How to use

import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *

spark = sparknlp.start()

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

t5 = T5Transformer.pretrained("t5_informal_to_formal_styletransfer") \
.setTask("transfer Casual to Formal:") \
.setInputCols(["documents"]) \
.setMaxOutputLength(200) \
.setOutputCol("transfers")

pipeline = Pipeline().setStages([documentAssembler, t5])
data = spark.createDataFrame([["Who gives a crap?"]]).toDF("text")
result = pipeline.fit(data).transform(data)
result.select("transfers.result").show(truncate=False)

Results

+------------+
|result      |
+------------+
|[Who cares?]|
+------------+

Model Information

Model Name: t5_informal_to_formal_styletransfer
Compatibility: Spark NLP 3.4.0+
License: Open Source
Edition: Official
Input Labels: [documents]
Output Labels: [summaries]
Language: en
Size: 924.0 MB

Data Source

The original model is from the transformers library:

https://huggingface.co/prithivida/informal_to_formal_styletransfer