Word2Vec Embeddings in French (300d)

Description

Word Embeddings lookup annotator that maps tokens to vectors.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d", "fr")\
.setInputCols(["document", "token"])\
.setOutputCol("embeddings")
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d", "fr")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
import nlu
nlu.load("fr.embed.w2v_cc_300d").predict("""Put your text here.""")

Model Information

Model Name: w2v_cc_300d
Type: embeddings
Compatibility: Spark NLP 3.4.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [embeddings]
Language: fr
Size: 1.3 GB
Case sensitive: false
Dimension: 300

References

fastText common crawl word embeddings for French.