Stopwords Remover for Ancient Greek language (907 entries)

Description

This is a scalable, production-ready Stopwords Remover model trained using the corpus available at stopwords-iso.

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols(["document"]) \
.setOutputCol("token")

stop_words = StopWordsCleaner.pretrained("stopwords_iso","grc") \
.setInputCols(["token"]) \
.setOutputCol("cleanTokens")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, stop_words]) 

example = spark.createDataFrame([["Όντας δε θνητούς θνητά και φρονείν χρεών."]], ["text"]) 

results = pipeline.fit(example).transform(example)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val stop_words = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")

val lemmatizer = StopWordsCleaner.pretrained("stopwords_iso","grc") 
.setInputCols(Array("token")) 
.setOutputCol("cleanTokens")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, stop_words))
val data = Seq("Όντας δε θνητούς θνητά και φρονείν χρεών.").toDF("text")
val results = pipeline.fit(data).transform(data)
import nlu
nlu.load("grc.stopwords").predict("""Όντας δε θνητούς θνητά και φρονείν χρεών.""")

Results

+---------------------------------------------------+
|result                                             |
+---------------------------------------------------+
|[Όντας, δε, θνητούς, θνητά, και, φρονείν, χρεών, .]|
+---------------------------------------------------+

Model Information

Model Name: stopwords_iso
Compatibility: Spark NLP 3.4.1+
License: Open Source
Edition: Official
Input Labels: [token]
Output Labels: [cleanTokens]
Language: grc
Size: 4.5 KB