DeBERTa xsmall model

Description

The DeBERTa model was proposed in [[https://arxiv.org/abs/2006.03654 DeBERTa: Decoding-enhanced BERT with Disentangled Attention]] by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google’s BERT model released in 2018 and Facebook’s RoBERTa model released in 2019. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%).

Predicted Entities

Download Copy S3 URI

How to use

embeddings = DeBertaEmbeddings.pretrained("deberta_v3_xsmall", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")

val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_xsmall", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")

import nlu
nlu.load("en.embed.deberta_v3_xsmall").predict("""Put your text here.""")

Model Information

Model Name: deberta_v3_xsmall
Compatibility: Spark NLP 3.4.2+
License: Open Source
Edition: Official
Input Labels: [token, sentence]
Output Labels: [embeddings]
Language: en
Size: 169.3 MB
Case sensitive: true
Max sentence length: 128

References

https://huggingface.co/microsoft/deberta-v3-xsmall

Benchmarking

#### Fine-tuning on NLU tasks

The dev results on SQuAD 2.0 and MNLI tasks.

| Model             |Vocabulary(K)|Backbone #Params(M)| SQuAD 2.0(F1/EM) | MNLI-m/mm(ACC)|
|-------------------|----------|-------------------|-----------|----------|
| RoBERTa-base      |50     |86                 | 83.7/80.5 | 87.6/-   |
| XLNet-base        |32     |92                 | -/80.2    | 86.8/-   |
| ELECTRA-base      |30    |86                  | -/80.5    | 88.8/    |
| DeBERTa-base      |50     |100                |  86.2/83.1| 88.8/88.5|
| DeBERTa-v3-large|128|304                      | 91.5/89.0 | 91.8/91.9|
| DeBERTa-v3-base |128|86                       | 88.4/85.4 | 90.6/90.7|
| DeBERTa-v3-small  |128|44                     | 82.8/80.4 | 88.3/87.7|
| **DeBERTa-v3-xsmall** |128|**22**             | **84.8/82.0** | **88.1/88.3**|
| DeBERTa-v3-xsmall+SiFT|128|22                 | -/-       | 88.4/88.5|