Word2Vec Embeddings in Urdu (300d)

Description

Word Embeddings lookup annotator that maps tokens to vectors.

Download Copy S3 URICopied!

How to use

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d","ur") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["مجھے سپارک این ایل پی سے محبت ہے"]]).toDF("text")

result = pipeline.fit(data).transform(data)

Model Information

Model Name: w2v_cc_300d
Type: embeddings
Compatibility: Spark NLP 3.4.1+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [embeddings]
Language: ur
Size: 672.4 MB
Case sensitive: false
Dimension: 300