Fastext Word Embeddings in German

Description

Word Embeddings lookup annotator that maps tokens to vectors.

Predicted Entities

Open in Colab Download Copy S3 URI

How to use

model = WordEmbeddingsModel.pretrained("w2v_cc_300d","de")\
	            .setInputCols(["document","token"])\
	            .setOutputCol("word_embeddings")
val model = WordEmbeddingsModel.pretrained("w2v_cc_300d","de")
	                .setInputCols(Array("document","token"))
	                .setOutputCol("word_embeddings")
import nlu
nlu.load("de.embed.w2v").predict("""Put your text here.""")

Results

Word2Vec feature vectors based on `w2v_cc_300d`.

Model Information

Model Name: w2v_cc_300d
Type: embeddings
Compatibility: Spark NLP 2.5.5+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [embeddings]
Language: de
Size: 1.2 GB
Case sensitive: false
Dimension: 300

References

FastText common crawl word embeddings for Germany https://fasttext.cc/docs/en/crawl-vectors.html