Lemma UD model for Lithuanian (lemma_alksnis)

Description

Pretrained Lemmatizer model (lemma_alksnis) trained on Universal Dependencies 2.9 (UD_Lithuanian-ALKSNIS) in Lithuanian language.

Open in Colab Download Copy S3 URI

How to use

          
document = DocumentAssembler()\ 
    .setInputCol("text")\ 
    .setOutputCol("document")

sentence = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\ 
    .setInputCols(["document"])\ 
    .setOutputCol("sentence")

tokenizer = Tokenizer()\ 
    .setInputCols(["sentence"])\ 
    .setOutputCol("token") 

lemma = LemmatizerModel.pretrained("lemma_alksnis", "lt")\ 
.setInputCols(["token"])\
    .setOutputCol("lemma")
    
pipeline = Pipeline(stages=[document, sentence, tokenizer, lemma])
    
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
    


val document = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentence = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
  .setInputCols("document")
  .setOutputCol("sentence")

val tokenizer = new Tokenizer() 
    .setInputCols("sentence") 
    .setOutputCol("token")
    
val lemma = LemmatizerModel.pretrained("lemma_alksnis", "lt")
.setInputCols("token")
    .setOutputCol("lemma")
    
val pipeline = new Pipeline().setStages(Array(document, sentence, tokenizer, lemma))

val data = Seq("I love Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("lt.lemma.alksnis").predict("""I love Spark NLP""")

Model Information

Model Name: lemma_alksnis
Compatibility: Spark NLP 3.4.3+
License: Open Source
Edition: Official
Input Labels: [form]
Output Labels: [lemma]
Language: lt
Size: 211.4 KB

References

Model is trained on Universal Dependencies (treebank 2.9) UD_Lithuanian-ALKSNIS

https://github.com/UniversalDependencies/UD_Lithuanian-ALKSNIS