Description
This embeddings component was trained on PubMed abstracts all along with citation link information. The model was introduced in this paper, achieving state-of-the-art performance on several biomedical NLP benchmarks such as BLURB and MedQA-USMLE.
Predicted Entities
How to use
embeddings = BertEmbeddings.pretrained("bert_biolink_large", "en")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
val embeddings = BertEmbeddings.pretrained("bert_biolink_large", "en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
import nlu
nlu.load("en.embed.ge").predict("""Put your text here.""")
Model Information
Model Name: | bert_biolink_large |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [embeddings] |
Language: | en |
Size: | 1.3 GB |
Case sensitive: | true |
Max sentence length: | 512 |
References
https://pubmed.ncbi.nlm.nih.gov/
@InProceedings{yasunaga2022linkbert,
author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
title = {LinkBERT: Pretraining Language Models with Document Links},
year = {2022},
booktitle = {Association for Computational Linguistics (ACL)},
}
Benchmarking
Scores for several benchmark datasets :
- BLURB : 84.30
- PubMedQA : 72.2
- BioASQ : 94.8
- MedQA-USMLE : 44.6