Description
DeBERTa v3 model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
deberta_v3_small_sequence_classifier_dbpedia_14 is a fine-tuned DeBERTa model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.
We used TFDebertaV2ForSequenceClassification to train this model and used DeBertaForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
tokenizer = Tokenizer()\
.setInputCols(['document'])\
.setOutputCol('token')
sequenceClassifier = DeBertaForSequenceClassification.pretrained("deberta_v3_small_sequence_classifier_dbpedia_14", "en")\
.setInputCols(["document", "token"])\
.setOutputCol("class")\
.setCaseSensitive(True)\
.setMaxSentenceLength(512)
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])
example = spark.createDataFrame([['I really liked that movie!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = DeBertaForSequenceClassification.pretrained("deberta_v3_small_sequence_classifier_dbpedia_14", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val example = Seq("I really liked that movie!").toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.classify.dbpedia").predict("""I really liked that movie!""")
Model Information
Model Name: | deberta_v3_small_sequence_classifier_dbpedia_14 |
Compatibility: | Spark NLP 3.4.3+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, document] |
Output Labels: | [ner] |
Language: | en |
Size: | 526.6 MB |
Case sensitive: | true |
Max sentence length: | 512 |