DeBERTa Sequence Classification Small - DBpedia14 (deberta_v3_small_sequence_classifier_dbpedia_14)

Description

DeBERTa v3 model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.

deberta_v3_small_sequence_classifier_dbpedia_14 is a fine-tuned DeBERTa model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.

We used TFDebertaV2ForSequenceClassification to train this model and used DeBertaForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!

Download Copy S3 URI

How to use


document_assembler = DocumentAssembler()\ 
.setInputCol("text")\ 
.setOutputCol("document")

tokenizer = Tokenizer()\ 
.setInputCols(['document'])\ 
.setOutputCol('token') 

sequenceClassifier = DeBertaForSequenceClassification.pretrained("deberta_v3_small_sequence_classifier_dbpedia_14", "en")\ 
.setInputCols(["document", "token"])\ 
.setOutputCol("class")\ 
.setCaseSensitive(True)\ 
.setMaxSentenceLength(512) 

pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])

example = spark.createDataFrame([['I really liked that movie!']]).toDF("text")
result = pipeline.fit(example).transform(example)

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = DeBertaForSequenceClassification.pretrained("deberta_v3_small_sequence_classifier_dbpedia_14", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val example = Seq("I really liked that movie!").toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu
nlu.load("en.classify.dbpedia").predict("""I really liked that movie!""")

Model Information

Model Name: deberta_v3_small_sequence_classifier_dbpedia_14
Compatibility: Spark NLP 3.4.3+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [ner]
Language: en
Size: 526.6 MB
Case sensitive: true
Max sentence length: 512

References

https://huggingface.co/datasets/allocine