Description
Pretrained Bert Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. alberti-bert-base-multilingual-cased
is a Spanish model orginally trained by flax-community
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_alberti_bert_base_multilingual_cased","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Me encanta chispa nlp"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("bert_embeddings_alberti_bert_base_multilingual_cased","es")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("Me encanta chispa nlp").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.embed.alberti_bert_base_multilingual_cased").predict("""Me encanta chispa nlp""")
Model Information
Model Name: | bert_embeddings_alberti_bert_base_multilingual_cased |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | es |
Size: | 667.2 MB |
Case sensitive: | true |
References
- https://huggingface.co/flax-community/alberti-bert-base-multilingual-cased
- https://github.com/google/flax
- https://github.com/linhd-postdata/averell/
- https://postdata.linhd.uned.es/
- https://github.com/pruizf/disco
- https://github.com/bncolorado/CorpusSonetosSigloDeOro
- https://github.com/bncolorado/CorpusGeneralPoesiaLiricaCastellanaDelSigloDeOro
- https://github.com/linhd-postdata/gongocorpus
- http://obvil.sorbonne-universite.site/corpus/gongora/gongora_obra-poetica
- https://github.com/alhuber1502/ECPA
- https://github.com/waynegraham/for_better_for_verse
- https://crisco2.unicaen.fr/verlaine/index.php?navigation=accueil
- https://github.com/linhd-postdata/metrique-en-ligne
- https://github.com/linhd-postdata/biblioteca_italiana
- http://www.bibliotecaitaliana.it/
- https://github.com/versotym/corpusCzechVerse
- https://gitlab.com/stichotheque/stichotheque-pt
- https://github.com/linhd-postdata/poesi.as
- http://www.poesi.as/
- https://github.com/aparrish/gutenberg-poetry-corpus
- https://www.kaggle.com/ahmedabelal/arabic-poetry
- https://github.com/THUNLP-AIPoet/Datasets/tree/master/CCPC
- https://github.com/sks190/SKVR
- https://github.com/linhd-postdata/textgrid-poetry
- https://textgrid.de/en/digitale-bibliothek
- https://github.com/tnhaider/german-rhyme-corpus
- https://github.com/ELTE-DH/verskorpusz
- https://www.kaggle.com/oliveirasp6/poems-in-portuguese
- https://www.kaggle.com/grafstor/19-000-russian-poems
- https://discord.com/channels/858019234139602994/859113060068229190