Description
Pretrained Bert Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. bert-base-uncased-dstc9 is a English model orginally trained by wilsontam.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_bert_base_uncased_dstc9","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")
val tokenizer = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("bert_embeddings_bert_base_uncased_dstc9","en") 
.setInputCols(Array("document", "token")) 
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.bert_base_uncased_dstc9").predict("""I love Spark NLP""")
Model Information
| Model Name: | bert_embeddings_bert_base_uncased_dstc9 | 
| Compatibility: | Spark NLP 3.4.2+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence, token] | 
| Output Labels: | [bert] | 
| Language: | en | 
| Size: | 410.0 MB | 
| Case sensitive: | true | 
References
- https://huggingface.co/wilsontam/bert-base-uncased-dstc9
- https://github.com/alexa/alexa-with-dstc9-track1-dataset