Description
Pretrained Bert Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. beto-gn-base-cased
is a Spanish model orginally trained by mmaguero
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_beto_gn_base_cased","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Me encanta chispa nlp"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("bert_embeddings_beto_gn_base_cased","es")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("Me encanta chispa nlp").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.embed.beto_gn_base_cased").predict("""Me encanta chispa nlp""")
Model Information
Model Name: | bert_embeddings_beto_gn_base_cased |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | es |
Size: | 411.5 MB |
Case sensitive: | true |
References
- https://huggingface.co/mmaguero/beto-gn-base-cased