Description
Pretrained Bert Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. chinese-roberta-wwm-ext-large
is a Chinese model orginally trained by hfl
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_chinese_roberta_wwm_ext_large","zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("bert_embeddings_chinese_roberta_wwm_ext_large","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("zh.embed.chinese_roberta_wwm_ext_large").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_embeddings_chinese_roberta_wwm_ext_large |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | zh |
Size: | 1.2 GB |
Case sensitive: | true |
References
- https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
- https://arxiv.org/abs/1906.08101
- https://github.com/google-research/bert
- https://github.com/ymcui/Chinese-BERT-wwm
- https://github.com/ymcui/MacBERT
- https://github.com/ymcui/Chinese-ELECTRA
- https://github.com/ymcui/Chinese-XLNet
- https://github.com/airaria/TextBrewer
- https://github.com/ymcui/HFL-Anthology
- https://arxiv.org/abs/2004.13922
- https://arxiv.org/abs/1906.08101