Description
Legal Pretrained Bert Embeddings model, trained with uncased text, uploaded to Hugging Face, adapted and imported into Spark NLP. legal-bert-base-uncased
is a English model orginally trained by nlpaueb
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_legal_bert_base_uncased","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("bert_embeddings_legal_bert_base_uncased","en")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.legal_bert_base_uncased").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_embeddings_legal_bert_base_uncased |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | en |
Size: | 410.1 MB |
Case sensitive: | false |
References
- https://huggingface.co/nlpaueb/legal-bert-base-uncased
- https://aclanthology.org/2020.findings-emnlp.261/
- https://eur-lex.europa.eu/
- https://www.legislation.gov.uk/
- https://case.law/
- https://www.sec.gov/edgar.shtml
- https://archive.org/details/legal_bert_fp
- http://nlp.cs.aueb.gr/