Description
Pretrained DistilBERT Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. BERTino
is a Italian model orginally trained by indigo-ai
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = DistilBertEmbeddings.pretrained("distilbert_embeddings_BERTino","it") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Adoro Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = DistilBertEmbeddings.pretrained("distilbert_embeddings_BERTino","it")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("Adoro Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("it.embed.BERTino").predict("""Adoro Spark NLP""")
Model Information
Model Name: | distilbert_embeddings_BERTino |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | it |
Size: | 253.3 MB |
Case sensitive: | true |
References
- https://huggingface.co/indigo-ai/BERTino
- https://indigo.ai/en/
- https://www.corpusitaliano.it/
- https://corpora.dipintra.it/public/run.cgi/corp_info?corpname=itwac_full
- https://universaldependencies.org/treebanks/it_partut/index.html
- https://universaldependencies.org/treebanks/it_isdt/index.html
- https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500