Description
Pretrained ALBERT Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. albert-base-bahasa-cased
is a Malay model orginally trained by malay-huggingface
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = AlbertEmbeddings.pretrained("albert_embeddings_albert_base_bahasa_cased","ms") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Saya suka Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
Model Information
Model Name: | albert_embeddings_albert_base_bahasa_cased |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | ms |
Size: | 45.7 MB |
Case sensitive: | false |
References
- https://huggingface.co/malay-huggingface/albert-base-bahasa-cased
- https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean
- https://github.com/huseinzol05/malay-dataset/tree/master/corpus/pile
- https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/albert