Description
Pretrained RoBERTa Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. bertin-base-stepwise-exp-512seqlen is a Spanish model orginally trained by bertin-project.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_bertin_base_stepwise_exp_512seqlen","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Me encanta chispa nlp"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")
val tokenizer = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_bertin_base_stepwise_exp_512seqlen","es") 
.setInputCols(Array("document", "token")) 
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("Me encanta chispa nlp").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.embed.bertin_base_stepwise_exp_512seqlen").predict("""Me encanta chispa nlp""")
Model Information
| Model Name: | roberta_embeddings_bertin_base_stepwise_exp_512seqlen | 
| Compatibility: | Spark NLP 3.4.2+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence, token] | 
| Output Labels: | [bert] | 
| Language: | es | 
| Size: | 234.9 MB | 
| Case sensitive: | true | 
References
- https://huggingface.co/bertin-project/bertin-base-stepwise-exp-512seqlen