Description
Pretrained RoBERTa Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. distilroberta-base-climate-s
is a English model orginally trained by climatebert
.
Sampling strategy s:As expressed in the author’s paper here, s is “sim select”, meaning 70% of the most similar sentences of one of the corpus was used, discarding the rest.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_distilroberta_base_climate_s","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_distilroberta_base_climate_s","en")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | roberta_embeddings_distilroberta_base_climate_s |
Compatibility: | Spark NLP 3.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | en |
Size: | 310.0 MB |
Case sensitive: | true |
References
- https://huggingface.co/climatebert/distilroberta-base-climate-s
- https://arxiv.org/abs/2110.12010